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Abstract 
The viscous dissipation and Joule heating effect on unsteady MHD free convection fluid flow along a semi 

infinite vertical porous plate in presence of ion-slip current has investigated. The governing equations have 

been transformed into dimensionless coupled nonlinear ordinary differential equations by applying usual 

transformations. The finite difference method is used as a main tool for the numerical solution. The obtained 

numerical results are presented in the form of primary and secondary velocities; and temperature distributions 

for different parameters entering into the problem. The results show that the primary velocity increases for 

different values of ion-slip parameter, Eckert number while it decreases for different values of magnetic 

parameter and Prandtl number. Temperature distributions increase with the increase of magnetic parameter 

and Eckert number while it decreases with the increases of Prandtl number. The results of velocity and 

temperature distributions are displayed in the form of graph and also the local skin friction coefficient and 

Nusselt number are also shown in the form of tabular. 
 

Keywords: MHD, Ion-slip current, viscous dissipation, Joule heating, uniform magnetic field. 

 

1. Introduction 
The natural convection flow on a vertical surface embedded in porous media occurs in many important 

engineering problems such as heat exchanger devices, petroleum reservoirs, geothermal and geophysical 

engineering, moisture migration in a fibrous insulation and nuclear waste disposal. Viscous dissipation changes 

the temperature distributions by playing a role like an energy source, which leads to affected heat transfer rates. 

The merit of the effect of viscous dissipation depends on whether the plate is being cooled or heated. Prasanna 

Lakshmi et al. [1] studied MHD boundary layer flow of heat and mass transfer over a moving vertical plate in a 

porous medium with suction and viscous dissipation. Khaled [2] studied the influence of Hall current and 

viscous dissipation on MHD convective heat and mass transfer in a rotating porous channel with joule heating. 

In an ionized gas where the density is low and/or the magnetic field is very strong, the effects of Hall and ion-

slip currents play a significant role in the velocity distribution of the flow. The study of magnetohydrodynamic 

flows  with  Hall  and  ion-slip  currents  has  important  engineering  applications  in  the  problem  of 

magnetohydrodynamic generators and of Hall accelerators as well as flight magnetohydrodynamics. Emad M. 

Abo-Eldahab and ,Mohamed A. El Aziz [3] studied viscous dissipation and Joule heating effects on MHD-free 

convection from a vertical plate with power-law variation in surface temperature in the presence of Hall and ion-

slip currents.  Combined effect of viscous dissipation and joule heating on the coupling of conduction and free 

convection along a vertical flat plate investigated by Alim et al [4]. Mamun et al. [5] investigated combined 

effect of conduction and viscous dissipation on MHD free convection flow along a vertical flat plate. Md. 

Mahmud Alam et al. [6] studied viscous dissipation and joule heating effects on steady MHD combined heat 

and mass transfer flow through a porous medium in a rotating system. Combined effects of Hall and ion-slip 

currents on free convective heat generating flow past a semi-infinite vertical flat plate have been investigated by 

Abo-Eldahab and Aziz [7]. Koushik  Dash et al. [8] studied MHD free convection and mass  transfer  flow from 
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a vertical plate in the presence of Hall and ion-slip current. Ferdows et al.[9] investigated  the effects  of Hall 

and  ion-slip currents on free convective heat transfer flow past a vertical plate considering slip conditions. 

Rama Krishna Reddy and Raju [10] studied MHD free convective flow past a porous plate.  Anjali Devi et al. 

[11] investigated the Hall effect on unsteady MHD free convection flow past an impulsively started porous plate 

with viscous and Joule’s dissipation. Joule heating effect on Magnetohydrodynamic natural convection flow 

along a vertical wavy surface studied by Nazma Parveen and Alim [12].  
 

Hence, our objective is to investigate viscous dissipation and Joule heating effect on unsteady MHD free 

convection fluid flow along the vertical semi-infinite porous plate in presence of ion-slip current. 
 

2. Governing Equations  
The two dimensional unsteady flow of an electrically conducting incompressible viscous fluid past an semi-

infinite vertical porous plate has been considered. The flow is assumed to be 

in the x -axis which is taken along the plate in the upward direction and y -

axis is normal to it. Initially the fluids as well as the plate are at rest. It is 

assumed that, wT  are temperature and spices concentration at the wall and, 

T are the temperature and the concentration of the spices outside the 

boundary layer respectively. The physical configuration of the problem is 

shown in Fig.1. A strong magnetic field is applied in the y -direction. The 

uniform magnetic field strength 0B  can be taken as  0,,0 0BB . The 

induced magnetic field is neglected, since the magnetic Reynolds number of 

a partially-ionized fluid is very small. The equation of conservation of 

electric charge 0 J  gives yJ constant because the direction of 

propagation is considered only along y -axis and J  does not have any 

variation along the y -axis. The equations which govern the flow under the 

above consideration and Boussinesq’s approximation are as follows: 
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where iee  1 , e (Hall parameter), i (ion-slip parameter),  (volumetric coefficient of thermal 

expansion),  0g  (acceleration due to gravity),   (Kinematic viscosity),  (fluid density), k  (permeability of the 

porous medium), pc (Specific heat at constant pressure),   (Thermal conductivity), 0B  (uniform magnetic 

field), e (Electrical conductivity), T  (temperature in the boundary layer), T (temperature outside the 

boundary layer), t  ( dimensional time). 

The boundary conditions for the problems are;  

0at,,0,0,0  yTTwvUu w  

                                                yTTwvu as,,0,0,0                                           (5) 

 

3. Mathematical Formulation 
The problem is simplified by writing the equations in the non-dimensional form. Now introduce the following 

non-dimensional quantities  
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Then introducing the dimensionless quantities (6) in equations (1)-(4) respectively, the following dimensionless 

equations are as follows; 

 

  

Fig.1 Physical configuration 
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The corresponding boundary conditions are as follows;  

0,1,0,0,1  YatTWVU  

                                                    0,0,0,0  YasTWU                                            (11) 

where 
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4. Solution Technique 
 

The governing second order non-linear coupled 

dimensionless partial differential equations have 

been solved numerically with the associated 

boundary conditions by Compaq visual Fortran 6.6a 

and the figures have been drawn by Tecplot 7. The 

explicit finite difference method has been used to 

solve the coupled equations (7)-(10) with 

boundary conditions (11).To obtain the difference 

equations the region of the flow is divided into a 

grid or mesh of lines parallel to X   and Y axes, 

where X -axis is taken along the plate and Y -axis 

is taken normal to the plate. Here the plate height 

)0.80(maxX is considered i.e. X varies form 0 to 80 and assumed )0.60(maxY  as corresponding maxY   i.e. 

Y varies from 0 to 60. There are 300m   and 300n  grid spacing in the X  and Y directions respectively and 

taken as follows )800(27.0  XX  

and )600(2.0  YY with the smaller time step 005.0 . 

 

5. Shear Stress, Nusselt number and Sherwood number 
The quantities of chief physical interest are shear stress, Nusselt number and Sherwood number. The following 

equations represent the local and average shear stress at the plate. Local shear stress in x and z -axes are as 

follows; 
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6. Results and Discussion  
The   numerical results has been carried out for dimensionless primary velocity ( U ), secondary  velocity(W ), 

temperature( T ), local and average shear   stresses in x -axis ( LU , AU ), local and average shear stresses in z -

axis ( LW  , AW ), local and average Nusselt numbers ( uLN , uAN  ) for various values of the material parameters 

such as Hall parameter( e ), ion-slip parameter( i ), magnetic parameter( M ), Prandtl number( rP ),  

permeability parameter(  ), Eckert number ( cE ). The values for the parameters are chosen arbitrarily in most 

cases.  Some standard values for of the Prandtl number ( rP ) is considered because of the physical importance. 

Physically 71.0rP   corresponds to air at C020 , 0.1rP  corresponds to water at C020 , 63.1rP   

corresponds to glycerin at 500C. The importance of cooling problem in nuclear engineering in connection with 

the cooling of reactors, the values of rG  is taken positive. Throughout the calculations the values of rG  is taken 

very large ( 0.5rG ). From Fig.3 (a-c), it have been seen that the primary velocity ( U ), local and average 

shear stresses in x -axis ( LU , AU ) decrease with the increase of magnetic parameter ( M ). An increase in the 

value of the magnetic parameter ( M ) leads to increase in the magnitude of the Lorentz force which serves to 

retard the primary velocity. Fig.4 (a-c) is illustrated that the temperature T  distributions increase whereas local 

and average Nusselt ( uLN , uAN ) decrease with the increase of M . The effects of a transverse magnetic field to 

an electrically conducting fluid gives rise to a resistive-type force called the Lorentz force. This force has the 

tendency to increase its temperature distributions. Analyzing the Fig.5 (a) it is clearly seen that the primary 

velocity (U ) profiles increases with an increase Eckert number ( cE ). This is due to the heat energy stored in 

the liquid because of the frictional heating. The local and average shear stresses ( LU , AU ) in x-axis increase 

for increasing values of Eckert number which are shown in Fig.5 (b,c). Fig.6 (a-c) is illustrated that the 

temperature T  distributions increase whereas local and average Nusselt ( uLN , uAN ) decrease with the increase 

of cE . The increase in the buoyancy force   due   to   an   increase   in   the   Eckert number enhances   the   

temperature.   Numerical values of the local shear stress in x and z- axes, Nusselt number for Prandtl’s number 

and permeability parameter are shown in Table 1. Qualitative comparison of the present results with the previous 

results in tabular form is shown in Table 2. The accuracy of the present results is qualitatively good in case of all the 

respective flow parameters. Other results are not shown for brevity. 

 

0 10 20 30 40 50
0

0.5

1

1.5

2

 
20 40 60 80

0.2

0.4

0.6

0.8

1

 
20 40 60 80 100

30

40

50

60

 

,0.5,0.2

01.0,,71.0

,1.0,2.0







r

cr

ie

G

EP





 

U   

  

       

Y   
  

       

0.1,75.0,5.0M  

LU   

  

       

X   
  

       

0.1,75.0,5.0M  

UA

    

       
0.1,75.0,5.0M  

   

  

       

,0.5,0.2

01.0,,71.0

,1.0,2.0







r

cr

ie

G

EP





 

,0.5,0.2

01.0,,71.0

,1.0,2.0







r

cr

ie

G

EP





 



    

 

201 

 

Fig.3(a) Primary velocity profiles 

for different values of M  

 

Fig.3(b) Local Shear stress in x -

axis for different values of M  
Fig.3(c) Average Shear stress in 

x -axis for different values of M  
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Fig.4(c) Average Nusselt number 

for different values of  M  
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Fig.5(a) Primary velocity profiles 

for different values of cE  
 

Fig.5(b) Local Shear stress in x -

axis for  different values of cE  
Fig.5(c) Average Shear stress in 

x -axis for different values of cE  
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Fig.6(a) Temperature profiles for 

different values of  cE  
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Table 1. Numerical values of LWLU  , , z  and uLN  for 5.0,01.0,1.0,2.0,0.5  MEG cier   
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Table 2. Qualitative comparison of the present results with the previous results. 

 
Increased 

parameters 

Previous results given by    

 Abo-Eldahab and El Aziz [3] 

Present results 

    

 Dec Inc Dec Inc 

 Inc Inc Inc Inc 

 

7. Conclusion 
From above mentioned studies, following conclusion can be drawn: 

 (i)  Magnetic field has significant effect on primary velocity field and retards the motion of the fluid. 

(ii)  Temperature distribution increase with the increase of magnetic parameter and Eckert number. 

(iii) Primary velocity profiles increase with increase of Eckert number. 

(iv) The local and average shear stress in x-axis, local and average Nusselt number are decreased with an    

       increase of magnetic parameter and Eckert number. 

(v) The shear stress in x-axis increases with an increase of Eckert number. 
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